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Abstract

We study 0-1 laws for extensions of first-order logic by
Lindstrom quantifiers. We state sufficient conditions on
a quantifier QQ expressing a graph property, for the logic
FO[Q] - the extension of first-order logic by means of the
quantifier Q — to have a 0-1 law. We use these condi-
tions to show, in particular, that FO[Rig], where Rig is
the quantifier expressing rigidity, has a 0-1 law. We also
show that FO[Ham], where Ham is the quantifier expressing
Hamzltonicity, does not have a 0-1 law. Blass and Harary
pose the question whether there is a logic which s powerful
enough to express Hamiltonicity or rigidity and which has
a 0-1 law. It is a consequence of our results that there is
no such regular logic (in the sense of abstract model the-
ory) in the case of Hamiltonicity, but there is one in the
case of rigidity. We also consider sequences of vectorized
quantifiers, and show that the extensions of first-order logic
obtained by adding such sequences generated by quantifiers
that are closed under substructures have 0-1 laws.

1 Introduction

The study of random graphs in combinatorics has
focused attention on the asymptotic probabilities of
graph properties. Informally, the asymptotic prob-
ability u(P) of a graph property P is the limit, as
n goes to infinity, of the proportion of graphs of
cardinality n that satisfy P, if this limit exists. It
turns out that many interesting properties of graphs
have asymptotic probability 0 or 1. Intuitively,
these properties are either false or true in almost
all graphs. Thus, for instance, p(connectivity) = 1,
#(3-colourability) = 0, u(rigidity) = 1, u(planarity) =
0 and p(Hamiltonicity) = 1 (see [3]). In contrast, it is
clear that evenness — the property of the cardinality
of a graph being even — does not have an asymptotic
probability.
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The study of the logical properties of random struc-
tures has focused on the existence of 0-1 laws, and
other limit laws, for a variety of logics. We say that a
logic L has a 0-1 law if, for every property that is ex-
pressible by a sentence of L, the asymptotic probabil-
ity is defined and is either 0 or 1. Glebskif et al. [9] and
Fagin [7] independently showed that first-order logic
has a 0-1 law. Such laws have also been established
for fragments of second-order logic [12], extensions of
first-order logic by inductive operators [1, 15, 16] and
the infinitary logic with finitely many variables [13]
(see [4] for a survey of results on 0-1 and limit laws).

Most of the known 0-1 laws in logic are proved
by means of extension azioms. For atomic types s,t
where s C t, the s-t-extension axiom is a first-order
sentence stating that every tuple realizing the type s
can be extended to a tuple realizing ¢. It can be proved
that every extension axiom has asymptotic probabil-
ity 1 [7]. For graphs this amounts to saying that for
all ¥ < m and all collections vy, ..., v, of m nodes
there almost surely exists a node w with an edge to
each of vy, ... ;v; but to none of vipy1,...,vm. Since
every extension axiom holds in almost all graphs, the
same is true for any property which is a consequence
of a finite collection of extension axioms. Some of the
results on asymptotic probabilities of graph proper-
ties mentioned above can be derived in this way. For
instance, the property of having diameter two is ex-
pressed by the conjunction of two extension axioms.
As a consequence, we obtain that u(connectivity) = 1,
even though connectivity is not a first-order property.
Similarly, given any graph H, the extension axioms
imply that almost all graphs contain H as an induced
subgraph. Thus, every non-trivial property which is
closed under taking subgraphs has asymptotic proba-
bility 0; in particular this proves that p(planarity) = 0
and p(3-colourability) = 0.

However, there are important graph properties
which have asymptotic probability 0 or 1 and for which
this does not follow from the extension axioms, the



most notable being Hamiltonicity and rigidity. Blass
and Harary [2] prove that there is no first-order sen-
tence with asymptotic probability 1 which implies ei-
ther Hamiltonicity or rigidity. They pose the question
of whether there is any natural logic which can express
Hamiltonicity or rigidity and which has a 0-1 law. This
problem is also commented on in an informal way and
reported as “still wide open” in [11].

In this paper we investigate 0-1 laws for extensions
of first-order logic by Lindstrom quantifiers. Such ex-
tensions were also considered, from the point of view of
0-1 laws by Fayolle et al. [8], where a sufficient condi-
tion was established on a quantifier (), for a restricted
fragment of the logic FO[Q] to have a 0-1 law. We ex-
tend such results and formulate other sufficient condi-
tions on quantifiers () associated with graph properties
which guarantee that the logic FO[@] has a 0-1 law in
the language of graphs.

We use our conditions to establish, in particular,
that FO[Rig] has a 0-1 law, where Rig is the quan-
tifier associated with the class of rigid graphs. By
contrast, we show that FO[Ham] does not have a 0-1
law, where Ham is the quantifier associated with the
class of Hamiltonian graphs. We also extend the result
for FO[Rig] to its closure under relativizations. This
enables us to establish that there is no regular logic
(in the sense ain which this term is used in abstract
model theory, see [6]) which can express Hamiltonicity
and which has a 0-1 law, but there is one in the case
of rigidity.

Finally, we also consider extensions of first-order
logic by means of vectorized quantifiers. In partic-
ular, we show that for any quantifier that is closed
under substructures, the corresponding extension of
first-order logic by means of a vectorized sequence of
quantifiers has a 0-1 law, greatly generalizing a re-
sult of [8]. This establishes 0-1 laws for the exten-
sions of first-order logic by the sequences of quanti-
fiers obtained by vectorizing the graph quantifiers for
3-colourability and planarity.

2 Preliminaries

Let o, 7 be finite relational signatures. We denote
structures by 2, B, . .. and their universes by A4, B, .. ..
Let Str(o) and Str, (o) denote, respectively, the set of
all finite o-structures and the set of all o-structures
with universe [n] = {0,...,n — 1}. For a o-structure
2l and a formula ¢(x1, . .., x;), we write ¥»* to denote
{a € A* : A |= (@)}, i.e. the relation that v defines on
2. Similarly, if ¢ has additional free variables y, then
for any valuation b of those variables, we define % as

{a € A* . = +(a,b)}, i.e. the relation defined by v
on 2 by fixing the interpretation of the parameters y
to be b. For a sentence ¢, we write Mod(i) to denote
the set of all (finite) models of ¢. A structure B is a
substructure of 2, if B C A, and the relations on ‘B
are the restrictions of the corresponding relations on
2 to the universe B.

Definition 2.1 An atomic type in x1,..., %) over o
1s a maximal consistent set of o-atoms and negated
o-atoms in the variables x1,... xy. Often, we call an
atomic type in k variables a k-type. We denote atomic
types by t,t' s, ... orbyt(xy, ..., 2r),... to display the
variables. By abuse of notation, we do not distinguish
between an atomic type and the conjunction over all
formulae in .

The following lemma is immediate.

Lemma 2.2 Fvery quantifier-free formula s equiva-
lent to a disjunction of atomic types.

ProOF. Let ¢(z1,...
mula over o. Then

olry,..., o) = \/ (e, ..., T8),

tl=e

, ) be a quantifier-free for-

where ¢t ranges over the atomic types in 1, ..., g over
0. |

2.1 Asymptotic Probabilities

Let 0 < p < 1. A Bernoulli trial with mean p is a
random variable X that takes only the values 0 and 1
and such that P[X = 1] = p.

Let T(0) = (Tn(0))nen be a sequence of probabil-
ity spaces over o-structures, where T',,(o) is obtained
by assigning a probability distribution p, to Str, ().
Some important examples are:

o Q,(c,1/2) denotes the probability space with the
uniform probability distribution, 1.e. every struc-
ture 2 € Str, (o) has the same probability u(2) =
1/|Str, (o).

e For arbitrary functions p : N — [0,1] we de-
fine the probability spaces Q,(o,p) as follows:
the truth of all instances R(¢1,...,4,) of o-atoms
over universe [n] are determined by independent
Bernoulli trials with mean p(n).

It is clear that when p is the constant function
1/2, this indeed gives the uniform probability dis-
tribution.



e G(n,p) is the probability space of random graphs
with edge probability p (again p may depend on
n). We write G(p) for the sequence (G(n,p))nen.
Note that G(n,p) is not the same space as
Q,({E}, p), since a graph is assumed to be undi-
rected and loop—free.

For a fixed sequence T'(¢) = (I'n(¢))nen of proba-
bility spaces, define the probability p,(P) of a class
P of o-structures as the probability that a struc-
ture 2 with universe {0,...,n — 1} is in the class
P. Define the asymptotic probability of P as u(P) =
limy, — o ptn (P), if this limit exists. If the limit does
not exist, we say that P has no asymptotic probabil-
ity for T'(o).

For any logic L, we define the asymptotic probabil-
ity p(yp) of a sentence of L to be u(Mod(¢p)). If every
sentence of L in the vocabulary ¢ has an asymptotic
probability for T'(¢), we say that L has a limit law
for T'(c). Furthermore, if u(p) is 0 or 1 for every o-
sentence ¢ of L, we say that L has a 0-1 law for T'(¢).

The following theorem is at the core of the proof
due to Glebskil et al. [9] that first order logic has a
0-1 law (see also [10]). Tt can be seen as establishing
an “almost sure” quantifier elimination property for
the theory of finite structures.

Theorem 2.3 ([9]) For every formula (%) of first-
order logic, there is a quantifier free formula 6(%) such
that the sentence YZ(6 — ) has asymptotic probabil-
ity 1.

For formulae ¥ and # as in Theorem 2.3 above, we will
say that ¢ and @ are equivalent almost everywhere.

2.2 Interpretations and Quantifiers

Let the signature 7 be {Ri,..., R} where R;
is a relation symbol of arity r;. A sequence ¥ =

¥1(21), ..., Ym(Zm) of formulae of signature o, where
¥;(Z;) has the free variables 1, ..., z,, defines an in-
terpretation

¥ Str(e) —  Str(r)

A — WA= (A7 .. 02).

An interpretation with parametersis given by a se-
quence ¥(y) = ¥1(Z1,9), - . ., Ym(ZFm, y) of o-formulae
1; which may contain besides z; additional free vari-
ables y. For any o-structure 2 and any valuation a
for y we obtain an interpreted structure

WA, a) = (A, 2T,

The following definition of a generalized quantifier
is essentially due to Lindstrom [14].

Definition 2.4 Let K be a collection of structures of
some fized signature 7, which is closed under isomor-
phisms, t.e. if A € K and A =B then B € K. With
K we associate the generalized quantifier Qg , which
can be adjoined to first-order logic to form an exten-
sion FO[Qk], which is defined by closing FO under
the following rule for building formulae:

If9(y) = (¢1,...,¢1) is an interpretation with pa-
rameters y from o to 7 then Qr&(¢1,...,¢r) is a
formula of FO[Qk] of signature o with free variables
g.

The semantics of Qg is given by the following rule:
for a o-structure U and a valuation a for y,

(Q[’ El) ': QK£(1/)1, ..

An interpretation ¥ from o-structures to 7-
structures also maps a probability space T'y(o) to a
new probability space UT'y, (o) of T-structures, defined
by assigning to B € Str, (7) the probability

B = S a0,
TA="B
where p(2l) is the probability of 2 in T\, (o).

On the other hand, if we are given ¥(y), an inter-
pretation with parameters, 1t does not define a map
from o-structures to m-structures. Rather, it defines a
map from pairs (2, @), where 2 is a o-structure and a
is a valuation of the parameters y in 2, to 7-structures.
Thus, we will assume we are given a probability space
T',.(0,y) that assigns a probability to (2, a) for each
2 € Strp (o) and each valuation @ of the parameters y
in 2. We then define the probability space ¥T'y (o, y)
by assigning to B € Str, (7) the probability

v(B)= > pa).

¥(A,a)=2

L) <= ¥ (U, a) € K.

One of the goals of this paper is to elucidate the struc-
ture of ¥T', (o, ¥).

2.3 Graph quantifiers

In this paper, a graph always means a loop-free
undirected graph G = (V, E'). A graph quantifier is a
generalized quantifier given by an isomorphism closed
class H of graphs. It is applied to interpretations that
map graphs to graphs. Thus, a graph quantifier binds
two variables, say « and y, and is applied to a single
formula ¢(z,y, Z) of signature {E}. A little compli-
cation arises because we have to make sure that the
interpreted structure ®(G,a) is indeed a graph. To
avoid the necessity of verifying the semantic condition
that a formula does indeed define an irreflexive and



symmetric relation (a condition that has to be met
for all valuations of the parameters), we impose no
restriction on the formulae, but modify the interpre-
tation of formulae.

Definition 2.5 For any class L of formulae over {E'}
and any 1somorphism closed class H of graphs, we de-
fine the logic LIQY] by closing L under the following
rule: given any formula o(x,y,z), we can build also
the formula

Q5. y ¢

with free variables z.
The semantics s given by the equivalence

Qe y ¢ = Quur,y (£ yA(e(e,y) Ve(y, x))).

(where ©(y, ) is p(x,y) with variables ¥ and y inter-
changed.)

For any formula ¢(xz,y, Z) we will refer to the inter-
pretation with parameters ®(z) defined by the formula
r £ yA(ple,y,2)Vely x, 2)) as the graph interpre-
tation associated with ¢. We also call Q7G_t the graph
quantifier associated with H.

3 Eulerian and Hamiltonian Graphs

32 We now proceed to investigate conditions that
can be imposed on a class of graphs H in order for
the logic FO[Q$] to have a 0-1 law. We begin, in this
section, by formulating some necessary conditions and
showing that they are not sufficient. We also obtain
a necessary and sufficient condition for a certain frag-
ment of FO[QY] to have a 0-1 law.

For any property K, let FO"[Q k] denote those sen-
tences of FO[Q k] of the form Qx 2y, where ¢ is first-
order, i.e. FO"[@Q k] can express exactly those proper-
ties that are reducible to K by means of a first-order
interpretation without parameters. This fragment was
considered by Fayolle et al. [8], who showed for any
generalized quantifier Qi , and any signature o, a suf-
ficient condition for the logic FO"[Qxk] to have a 0-1
law on the class of o-structures is that K is mono-
tone and closed under extensions. Clearly a necessary
condition is that K itself has asymptotic probability
0 or 1, because the property K can be trivially ex-
pressed by a sentence of FO"[@Qk]. We first show that
this latter condition is not sufficient, by means of an
example.

Example 3.1 Let £ be the class of Eulerian graphs.
It s well known that a connected graph G is Fulerian
if, and only if, every vertex in G has even degree. Fur-
thermore it follows from known results about degrees in
random graphs (see [3], chapter 3) that £ has asymp-
totic probability 0 for G(p) for any constant 0 < p < 1.
However, consider the following sentence of FO"[Eul]:

o = (Bulz,y (x £ y))

It is clear that a graph G satisfies ¢ if and only iof it
has an odd number of vertices. It follows that ¢ does
not have an asymptotic probability for G(p) for any p.

The above example shows that a graph property
might have asymptotic probability 0 or 1 for G(p) for a
fixed p, without the logic FO"[Q%], let alone FO[Q],
having a 0-1 law. The next result establishes a nec-
essary and sufficient condition for FO"[Q$/] to have a
0-1 law for G(p).

Theorem 3.2 For any graph property H, FO"[QY]
has a 0-1 law for G(p) if and only if H has asymptotic
probability 0 or 1 for each of G(0), G(1), G(p) and
G(1-p).

ProOF. Let ¢ = Q%z,y ¥ be asentence of FO'[Q%].
By Theorem 2.3, there is a quantifier free formula 6
that is equivalent to ¥ almost everywhere. The asymp-
totic probability of ¢ i1s given by the asymptotic prob-
ability of H on ©G(p), where © is the graph interpre-
tation defined by the formula 6.

Up to equivalence, there are only four quantifier-
free formulae in two variables that define an irreflexive
and symmetric relation:

True, False, Fxy and = Exy.

Thus, ©G(p) is one of G(1), G(0), G(p) or G(1 — p).
|

In Example 3.1 above, the class of Eulerian graphs
does not have an asymptotic probability defined for
g(1).

To take another example, recall that the class of
Hamiltonian graphs has asymptotic probability 1 for
G(p) for any constant p > 0 (see [3]). Since it is clear
that this class has asymptotic probability 0 for G(0),
it follows from Theorem 3.2 that FO"[Ham] has a 0-1
law. We will show next that there is no such law for
FO[Ham], which implies that the condition in Theo-
rem 3.2 is, in general, not sufficient to establish a 0-1
law for the unrestricted logic FO[QY].

Example 3.3 Consider the sentence:



o =3z(Hamuz,y ), where v = Fxz A~ Fyz

The interpretation ¥(z) defined by ¢ maps a pair
(G,v) (where G = (V,E) is a graph and v a dis-
tinguished vertex of G) to the complete bipartite
graph H = (V, E'), where B/ = {(a,b) | (v,a) €
E and (v,b) & E}. Letting D(v) denote the set {a €
V| (v,a) € B}, it can be verified that the graph H has
a Hamiltonian cycle if and only if |D(v)| = |V —D(v)|.
In particular, if G is a graph of odd size, then it cannot
satisfy the sentence ¢. On the other hand, ¢ is true
m a graph of cardinality 2n just in case the graph con-
tains a verter of degree n. But, as n goes to infinity
this happens almost surely (see [3], p. 57). We con-
clude that ¢ does not have an asymptotic probability

for G(1/2).

The contrast between Theorem 3.2 and Example 3.3
shows that quantifier-free interpretations with param-
eters can be much more complex than those without
parameters. We take up the analysis of the case with
parameters in the next section.

4 Graph Interpretations with Parame-
ters

In order to formulate a condition on the graph
quantifiers () which guarantees that the logic FO[Q]
has a 0-1 law, we will construct an argument by quan-
tifier elimination. That is, we will state sufficient con-
ditions on @) so that, for every quantifier free formula
¥, Qu, y 1 is itself equivalent, almost everywhere, to a
quantifier free formula. This, along with Theorem 2.3
will then enable us to derive the required result.

To establish this quantifier elimination, we consider
the action of a quantifier-free interpretaion with pa-
rameters ¥(y) on a probability distribution that as-
signs probabilities to structures (G,a). For this, we
consider each atomic type of the tuple a separately.
That is, for each atomic type ¢, we define a distribu-
tion Gy »(p) which assigns a probability to each pair
(G, a), where a is a tuple of elements of G. This prob-
ability 1s 0 if @ 1s not of type ¢ in (¢, and otherwise it
is the same for all tuples of type ¢ in G.

More formally, let ¢ be an atomic type in the vari-
ables 7 = z1, ..., 2y, such that for each 1 <7 < 5 < m,
t E 2z # z;. We denote by G; ,(p) the probabil-
ity space obtained from G,(p) as follows: for each
graph G € G,, and each m-tuple @ of elements in
G, let the probability u; »(G,a) = 0 if G £ t[a] and
ten(G, @) = pn(G)/k otherwise, where k is the num-
ber of distinct tuples in G of type t. We write G;(p)

for any sequence of probability spaces (T'y)nen such
that T, is G; »(p) for n > m.

Definition 4.1 Let ¥ be an inierpretation in m pa-
rameters and t a type tn m wvariables, as above. A
class of graphs M converges quickly to 1 (resp. 0} for

UG,(p) if ien(H) =1—o0(n="™) (resp. o(n=™)).

This definition enables us to formulate the following
lemma.

Lemma 4.2 If ¢(x,y,2) is a first-order formula,
W(Z) is the associated graph interpretation, and H
1s a class of graphs which converges quickly to 1 for
VG, (p), then the sentence Vz(t(z) — (Q%z,yv)) has
asymptotic probability 1 for G(p). Similarly, if H
converges quickly to 0 for UGy(p), then the sentence
3z(t(z) N QY x, y2p)) has asymptotic probability 0 for
g(p)-

PRrROOF. (Sketch) We sketch the proof for the univer-
sal case, the existential case being dual.

The number of tuples of type ¢ in a graph G of
cardinality n tends to n™ /e for some constant ¢ as n
goes to infinity. Thus, if H converges quickly to 1 on
UG, (p), then in almost all graphs, for all tuples a of
type ¢, ¥(G,a) € H. Hence YZ(1(Z) — (Q5z,yv))
has asymptotic probability 1 for G(p). [

Lemma 4.2 is used in proving the next result, which
defines the conditions for one step of our quantifier
elimination.

Lemma 4.3 If ¢ is a formula defining a graph inter-
pretation W(Z) in m parameters, and H is a class of
graphs which converges quickly to 0 or 1 for ¥G,(p),
for every m-type t, then there is a quantifier free for-
mula 0(z) such that the sentence ¥z(0 — Q%x,yv)
has asymptotic probability 1 for G(p).

ProoOF. (Sketch) Let

0= \/{t(%) : M converges quickly to 1 for ¥G,(p)}.
|

We now proceed to study the structure of the spaces
UG (p). By Theorem 2.3, it suffices to consider the
case where the interpretation ¥(z) is given by a quan-
tifier free formula. For the remainder of this section,
we will also confine ourselves to the case where p is
the constant function 1/2.

Let ¢(z,y, Z) be a quantifier free formula defining
a graph interpretation W(Z) with m parameters. By



Lemma 2.2, ¢ is equivalent to a disjunction of (m+2)-
types. Let S be the collection of the types in this dis-
junction that extend the m-type ¢. Clearly, ¥G;(1/2)
is completely determined by which types are in S.

Furthermore, if s is a type in the variables x,y, Z
extending (%), then s is determined by its subtypes
s1(x, 2), s2(y, ) and whether or not s | Fazy. More-
over, in the case where either s E o = z; or s |y = 2
for some ¢, the last of these is already determined by
the two (m + 1)-types s; and sa. Thus, given two
(m 4 1)-types s; and sy extending ¢, there may be
one or two (m + 2)-types consistent with s; and sa.
For our purposes, we can identify a set S of (m + 2)-
types extending ¢ with a function f that maps pairs
of (m + 1)-types extending ¢ into the set {0,1,1/2}.
Thus, f(s1,s2) = 0if there is no type in S that extends
s1 and s2; f(s1,s2) = 1/2 if there are two (m + 2)-
types that extend sy and s; and exactly one of them is
in S; and f(s1,s2) = 1 if all the (m—+2)-types that ex-
tend s; and so (whether there are one or two of them)
are in S.

Now, there are m+2™ distinct types in the variables
z, z, extending ¢. These are obtained by taking x = z;
for some ¢, yielding m distinct types, and for the case
when z # z; for all ¢, by taking the 27 ways in which
x can be connected by edges to z1,..., 2y

Thus, given a random graph G and a tuple a such
that G |= t[a], we can divide the vertices b € ¢ into
m + 2™ sets according to the (m + 1)-type of (b,a).
Of these sets, m are singletons (containing the ver-
tices that are in the tuple @) and the rest of the ver-
tices are distributed randomly among the other 2™
sets. The probability that a pair (b1,b2) satisifies
G E 9[b1,bs,a], and therefore that there is an edge
(b1,b2) in ¥((, a), is then given by f(s1,s2) where s;
is the (m+1)-type of (b;,a). This discussion motivates
the following definitions.

Definition 4.4 A pair (m, f) is an interpretive mea-
sure for G(1/2) if and only if m € N and there are
disjoint sets P = {p1,...,pm} and Q = {q1,...,qam }
such that f is a function from (P UQ)? to {0,1,1/2}
subject to the following conditions: f(z,y) = f(y, )
and if either v € P or y € P, then f(z,y) € {0,1}.

Definition 4.5 For any interpretive measure (m, f),
and any n > m, let T, be the collection of all functions
T :{0,...,n =1} — (P UQ), for which there are
m distinguished points 0 < ay, ..., an < n such that
T(x) =p; if and only if v = a;.

For each T € 1,, the probability space I'r is 0b-
tained by determining for each pair of points a,b €
{0,...,n — 1} whether there is an edge belween them

by means of independent Bernoulli trials with mean
J(T(a), T(8)).

Finally, the probability space T'yy(m, f) is defined by
assigning to each graph G with n vertices the prob-
ability (ZTeTn ur(G))/ card(T,), where pup(G) is the
probability assigned to G in the probability space I'p.

We write T(m, f) for the sequence (T'n(m, f))nen,
where for n < m, 'y, 1s chosen arbitrarily.

The relevance of the above definition to ¥G,(1/2)
emerges in the following lemma.

Lemma 4.6 If (x,y,Z) is a quantifier-free first-
order formula, W(Z) is the associated graph interpreta-
tion, and t is a type in the variables z, then VG,(1/2)
is T'(m, f) for some interpretive measure (m, f).

PrROOF. Let ¥* be the formula # # y A (¢(z,y) V
¥(y, »)), i.e. the formula that defines the interpreta-
tion ¥. By Lemma 2.2, we can assume that ¢ is pre-
sented as a disjunction over a set R of atomic types in
the variables z,y,z. Let S be the set of all types s in
the variables x, y, z such that:

skEa#y; and
st ie. s extends .

Clearly, ¥G;(1/2) is completely determined by the set
RNS.

We proceed to define the measure (m, f). Let m be
the number of distinct parameters in z, i.e. it is the
cardinality of a maximal set P = {z;,,..., 2, } of vari-
ables from z such that ¢ |= z;, # 2z, . We will assume
without loss of generality, by renaming variables if nec-
essary, that P consists of the variables {z1,..., 2, }.
Let @ = {q1,...,q2m} be the power set of P.

Intuitively, P U @ represents the m + 27 sets of
vertices as mentioned in the discussion preceding Def-
inition 4.4. Therefore, each pair (z,y) € (P U Q)?
either uniquely determines a type s € S (if either x or
yisin P), or it determines two types sg, sy € S. Thus,
for each pair (z,y) € (P UQ)?, we will determine the
value of the function f based on whether or not the
corresponding types are in R.

We formally define f as follows:

1. f(z,2) =0 for all z € P;

2. For z;,z; € P,i < j, let s be the unique type
in S such that s F 2 = z; Ay = z;. We let
flzi,zi) = f(z5,z) =1if s E o, and f(z,2) =

f(zj,2z) = 0 otherwise.

3. For z; € P and ¢ € @, let s be the unique type in
S satisfying:



skEx=z;

sEy#z, forl<j<m;
s E Eyz;, for z; € ¢; and
s |EEyz;, for z; € q.

We let f(zi,q) = fl¢,z) = 1 if s = ¢ and
flzi,q) = f(¢, ) = 0 otherwise.

4. for q;,q; € Q,1 < j, let 55 and 51 be the two types
in S satisfying:

S. | # 2z, for zp € P and ¢ =0, 1;
S. Ey# 2z, for z; € Pand ¢ =0, 1;
s | Fazy, for 2z € ¢;,¢ =0, 1;

s |E " FEazy, for zp & ¢; and ¢ =0, 1;
s, E Eyz, for z € ¢; and ¢ =0, 1;

s, E 2 Eyz, for 2z, € ¢; and ¢ =0, 1;
so E Pry; and

s1 E - Fay.

We let:

where,

0 if sp ¢ and 51 o
)1 if sp E¢and 51 v
P=Y 1/2 ifso | and s, (£ o
1/2 ifso lE ¢ and s1 = ¢

It then follows from the discussion preceeding Defini-

tion 4.4 that ¥G,(1/2) is T'(m, f). [

Lemma 4.6 tells us the structure of the probability
spaces on which H must converge quickly in order for
us to be able to apply Lemma 4.3 to eliminate an
occurrence of a quantifier. If this can be done for every
T'(m, f), then starting with an arbitrary sentence ¢ of
FO[Q%], by repeated application of this procedure, we
can obtain a quantifier free sentence that is equivalent
to ¢ almost everywhere. This then yields the main
theorem of this section:

Theorem 4.7 For any graph property H, «f H con-
verges quickly to 0 or 1 for T'(m, f) for every interpre-
tive measure (m, f), then FO[QS] has a 0-1 law for
g(1/2)

PROOF. Let ¢ be asentence of FO[QY]. We prove, by
induction on the total number of quantifiers in ¢, that
© 1s equivalent almost everywhere to a quantifier free
sentence, 1.e. to True or False. This is trivially true
when this number is 0. Let ¢ contain ¢4 1 quantifiers.

There is a subformula y of ¢ which is either of the form
Jx, or of the form Q%x,gﬂ/}, where v 1s quantifier
free. In either case, x is equivalent almost everywhere
to a quantifier free formula #. In the first case this
is true by Theorem 2.3 while in the second it follows
from Lemma 4.3. Thus, by replacing y by € in ¢,
we obtain a sentence ¢ that is equivalent to ¢ over a
class with asymptotic probability 1, and that has only
q quantifiers. But then, by the induction hypothesis,
¢’ 1s equivalent to a quantifier free sentence, on a class
of asymptotic probability 1. Since the intersection of
two classes that have asymptotic probability 1 must
itself have asymptotic probability 1, we conclude that
© 1s equivalent almost everywhere to a quantifier free
sentence. ]

We have assumed throughout this paper that we are
working with purely relational signatures. It is well
known that when we have constants in our signature,
than even the 0-1 law for first order logic fails. How-
ever, one can still show that every sentence 1s equiv-
alent almost everywhere to a quantifier free sentence
(¢f. Theorem 2.3). This extends also to the above The-
orem 4.7. Thus, for any H that satisfies the hypotheses
of the theorem, any sentence of FO[QS], perhaps in-
cluding constants, is equivalent almost everywhere to
a quantifier free sentence.

5 Rigidity

We now use the characterization provided by The-
orem 4.7 to show that FO[Rig] has a 0-1 law, where
Rig is the graph quantifier formed from the class of
rigid graphs.

Theorem 5.1 For every interpretive measure (m, f),
the probability that a graph s rigid converges exponen-
tially fast to either 0 or 1 for T(m, f).

Proor. We distinguish three cases for interpretive
measures (m, f). Recall that f: PUQ — {0,1,1/2}.

(i) There exists a non-trivial permutation = on P
such that f(p,p") = f(mp, np’) for all p,p’ € P,
and f(p,q) = f(mp,q) forallp e P, q € Q.

(ii) There exists a ¢ € @ such that f(¢,¢") € {0,1}
for all ¢ € Q.

(iii) All other cases.

In case (i) the permutation 7 defines a non-trivial
automorphism on all G € Ty(m, f). In case (ii) we



have a non-trivial automorphism for G € T'p(m, f)
provided G contains at least two nodes in the class
defined by ¢; this holds with probability tending to 1
exponentially fast. We prove that in all other cases,
the graphs G € T, (m, f) are almost surely rigid.

The random process of constructing G € T'y(1m, f)
can be split into two subprocesses. In the first stage,
the nodes from [n] = {0, ..., n—1} are distributed over
the m 4 2™ classes P U Q. In the second stage, edges
are determined according to the probabilities given by
f

Recall that the first subprocess randomly selects
m points to form the singleton sets p € P, and then
distributes the remaining n — m nodes over the sets
g € Q. For every ¢ € (), the probability that ¢ gets
precisely k points is described by a binomial distri-
bution b(k;n — m,27™), where b(k;n,p) is the usual
abbreviation for

(Z)pk(l —-p)"

Obviously, the expected number of elements in ev-
ery class ¢ is 27™(n — m). More precisely, basic facts
on binomial distributions (see e.g. [3, pp. 10-14]) im-
ply that for every 6 > 0, the probability that some
class ¢ contains less than (1 — §)27™(n — m) or more
than (14 6)27™(n—m) elements, is bounded by 27"
for some ¢ > 0.

It is convenient to exclude from further considera-
tion those rare events, where the nodes are not ‘evenly’
distributed over ). Fix a constant d > 0, and let
[d(m, f) be a new probability space, obtained from
T,.(m, f) by throwing away all those graphs where
the first stage of the construction produces any class
q € @ with less than (1 — d)27™n elements. Since
these graphs form a set whose measure goes to 0 ex-
ponentially fast, it suffices to prove our result for the
sequence of probability spaces T'd(m, f).

Let X(G) be the number of non-trivial automor-
phisms of G. We will prove that the expectation
E(X) on T'(m, f) tends exponentially fast to 0 as
n goes to infinity. Since, by Markov’s inequality,
P[X > 1] < E(X), this immediately implies the de-
sired result. For w € S, let X, be the indicator ran-
dom variable, defined by

_J1 ifre Aut(G)

0 otherwise.

XA (G)

By linearity of expectation we have that

EX)= >

TeS, —{id}

E(X5).

The support of a permutation 7, denoted supp(m)
is the set of points moved by . Let kA = |supp(7)| and
Thn={m €S, :|supp(m)| = h}.

It is sufficient to prove the following claim.

Claim. There exists a 6 > 0 such that
E(X,) < 270n
for all h and all m €T}, 3.
Indeed, the claim implies that

E(X) < Y |Tapl27™
h=1

n
< ZthogHQ—éhn < g—en
h=1

for some ¢ > 0.

We first prove a bound on F(X;) that holds for
arbitrary size of the support.

Lemma 5.2 If 7 # id, then F(X;) < 27" for some
€ > 0 and sufficiently large n.

PROOF. 7 moves at least one point, say =(i) = j.
Assume that the first subprocess produces p = {i}
and p’ = {j} for p,p’ € P. Then, since condition (4)
does not hold, there exists a class ¢ € @ such that
fp,q) # f(¥', ¢). Thus, to be an automorphism of G,
7 has have to move the whole class ¢. But this means
that 7 must preserve Q(n?) non-trivial edge events.
Otherwise, at least one of the nodes ¢ and j is put
into a class ¢ € ). But then, there exists an entire
class ¢’ € @) such that the edge-probabilities from this
node to ¢ are 1/2. Since ¢’ has Q(n) elements, the
result follows. [

Note that Lemma 5.2 proves the claim for h < k
where k is fixed (independent of n).

Before we prove the claim for permutations that
move more points, we make some general observations
that hold for arbitrary probability spaces of graphs.

Let 7 € S, and K be the set of potential edges,
i.e. the set of unordered pairs of elements of [n]. We
call R C K a witness set for m if K — R intersects
every orbit of the operation of 7 on K; in other words,
for every pair (7,j) € R there exists & € N such that
(7% (3), 7% (j)) ¢ R. If Ris a witness set for 7 € Aut(G)
and we fix the edges and non-edges of G outside of R,
then those inside R are determined as well.

The following is a possibile way to construct witness
sets: Let B, C' C supp(w) such that BNC =@ and C
contains, for every b € B, precisely one element of the



orbit of b under w. Further, let D = [n] — (B U C).
Then B x D is a witness set.

Thus, given a permutation # € S, we can estab-
lish an upper bound for EF(X;) as follows: We choose
suitable sets B,(' and prove that the first stage of
the construction of a random graph must assign edge
probability 1/2 to at least r pairs in the associated
witness set B x D. Then F(X;) <27".

Lemma 5.3 Let ¢ < (1 —d)27™ and let 2m < h <
en. Then there exists an ¢ > 0 such that F(X;) <
9—e(h/2=m)n form ey p.

ProoF. Let C' C supp(w) be any set obtained by
picking precisely one element out of every nontrivial
cycle of w, and let B = supp(wx) — C. Thus, D =
[n] — (B UC) coincides with the set of fixed points of
7 and therefore contains at least (1 —¢)n elements. B
contains at least h/2 nodes, since the support of 7 is
decomposed into cycles of length > 2 and C' contains
only one element of each cycle. Thus, at least h/2—m
of the nodes of B are put into some ¢ € @ so that
each of these has nontrivial edge-probabilities to at
least one entire class ¢/ € @. Since |¢/| > (1=d)27n,
it follows that |[D N ¢'| > en where ¢ = (1 — d)27™ —
¢. Thus B x D contains at least ¢(h/2 — m)n pairs
with edge probability 1/2. Thus the probability that

arandom graph G € T'¢(m, f) is fixed by 7 is bounded
by 2—a(h/2—m)n. n

Lemma 5.4 For the same constant ¢ as in the previ-

ous lemma and h > cn, there exists a 6 > 0 such that
2

E(Xn) <277,

ProoF. Let B, C be disjoint subsets of supp(w) such
that |B| = ¢n/2 and C' contains precisely one element
of each cycle of 7 that intersects with B. Again D =
[n] — (B UC) has at least (1 — ¢)n elements. With
precisely the same reasoning as in the previous lemma,
we infer that B x D contains at least (¢n/2 — m)en
pairs with edge probability 1/2. By choosing é > 0
such that én? < (en/2 —m)en, the result follows. m

Together, the three lemmata prove the claim, and
therefore the theorem. [

Theorem 5.1, together with Theorem 4.7 yields:
Corollary 5.5 FO[Rig] has a 0-1 law on G(1/2).

6 Regular Logics

In model theory, the notion of a regular logic has
been introduced, in order to make precise ideas of

what constitutes a natural extension of first-order
logic. A regular logic can be described as a logic that
can express all atoms, and is closed under negation,
conjunction, particularization (or existential quantifi-
cation), relativization and substitution. We refer to
[6] for precise definitions.

Proposition 6.1 For any class K of o-siructures,
FO[Qk] is the minimal logic closed under negation,
conjunction, particularization and substitution that
can express K.

Note that FO[Qx] is not necessarily regular since it
need not be closed under relativization. Nevertheless,
on the negative side, we get the following consequence
of this proposition and Example 3.3.

Theorem 6.2 There is no reqular logic that can ez-
press Hamiltonicity and has a 0-1 law for G(1/2).

In order to show that there is a regular logic that
can express rigidity on graphs and has a 0-1 law, we
need to consider the closure of FO[Rig] under rela-
tivization. This can be obtained by considering a rela-
tivized version of the rigidity quantifier, denoted Rig’,
which binds two formulae 6(z, Z) and ¢(z,y,z). Let
= (x#yYA(plx,y,2)Ve(y, z, 2)) be the irreflexive
and symmetric formula associated with ¢. Then the
meaning of a formula Rig' z,y(8,¢) € FO[Rig] in a
structure 2 with valuation b for z, is that the graph
(6% ™Y is rigid.

A simple modification of the proof of Theorem 5.1
gives the following result.

Theorem 6.3 FO[Rig] is a regular logic that has a
0-1 law for G(1/2).

7 Vectorized Quantifiers

In this section, we consider extensions of first-order
logic formed by adding vectorized quantifiers. A sin-
gle Lindstrom quantifier can be seen as giving rise to
an infinite sequence of quantifiers formed by vectoriza-
tion. This allows us to consider interpretations that
are not bound by the universe of a given structure and
can map it to potentially larger structures. Vectorized
interpretations and quantifiers capture a natural no-
tion of logical reduction. For a discussion of this and
its significance for descriptive complexity, see [5].

We begin with some definitions. Let 7 =
{R1,..., Ry} be asignature where R; has arity r;. A
vectorized interpretation of 7 in o of width & is given
by a sequence of o-formulas, ¥1(Z1,9), . . ., Ym(Zm, ¥),



where the length of z; is k - r;. The variables in y are
parameters. The interpretation maps a o-structure 2
along with an interpretation @ of the parameters in
2 to a T-structure B, whose universe is A* with the
relation R® given by 1/)?’6.

For any graph quantifier @y, we define its kth
vectorization Q’;_t as a quantifier that binds 2k vari-
ables and whose semantics is given by the follow-
ing rule: if ¢(#,y) defines a vectorized interpretation
VY(y) of width k, then (G,a) E Q5 z¢ if and only if
U(G,a) € H. We define FO[Q%] to be the extension of
first-order logic by the infinite sequence of quantifiers
{Q% |k e N}

Let @ be a vectorized interpretation of width k&
given by a quantifier free formula, with m parameters.
Let G and H be graphs and @, b be m tuples of ver-
tices from GG and H respectively, such that there is an
isomorphic embedding f : H — G with f(b) = a. Let
®f denote the map from ®(H,b) to ®(G,a) given by
the natural extension of f to k tuples. The following
lemma is based on the observation that quantifier free
formulas are preserved under isomorphic embeddings.

Lemma 7.1 ®f is an isomorphic embedding of

®(H,b) in (G, a).

Proor. If hy and hsy are two k-tuples in H, then
whether or not there is an edge between them in
(®H)(b) is determined by the quantifier free formulas
in ¢. However, quantifier free formulas are clearly pre-
served under the isomorphic embedding f, and there-

fore EI>f(711) and @ f(hy) have an edge if and only if A,
and hs do. [ ]

Let H be any fixed graph, b an m-tuple of vertices
in H and t the atomic type of b in H. Recall that
Gt n(p) 1s a probability space on structures (G, a), for
graphs G of cardinality n and m-tuples a of vertices of
G, such that the probability y; (G, @) is non zero only
if @ has type ¢ in G. Let F g 7, denote those structures
(G, a) for which there is an isomorphic embedding f :
(H,b) — (G, a).

Lemma 7.2 For any graph H, and any m-tuple b of
vertices of H,

pen(Fippy) =1—o(n™™).

Proor. The proof is immediate from the fact that
the probability of each of the extension axioms con-
verges exponentially quickly to 1 [7]. ]

Let ‘H be a collection of graphs that is closed un-
der taking substructures. The following lemma, which
is analogous to to Lemma 4.3, is derived from Lem-
mas 7.1 and 7.2.

Lemma 7.3 For any quantifier free formula ¢ defin-
ing a vectorized interpretation W(y) of width k, with
parameters y, there is a quantifier free formula 6 such
that the sentence V(0 — QX% ¢) has asymptotic prob-
ability 1 for G(p), for any constant p.

Proor. We show that for any m-type ¢, either there
is no pair (H,b), such that b has type t in H, and
(H,b) = Q%% ¢, and therefore H converges quickly to
0 for Gi(p); or H converges quickly to 1 for G;(p). Tt
then follows that we can take 8 to be the disjunction
of types t such that there is such a pair (H,b).
Suppose now, that for a given ¢, there is a graph
H and a tuple b of type t in H such that (H,b) =
Q;“_ti‘ 1. It then follows by Lemma 7.1 that for any
(G,a) € Figyy, (G,a) Q% z1. In other words, for
every (G,a) € Feapy U(G,a) € H. Therefore, by
Lemma 7.2 ‘H converges quickly to 1 for G;(p). [

This enables us to prove the following theorem, by
an elimination of quantifiers along the lines of Theo-
rem 4.7.

Theorem 7.4 For any class of graphs H closed under
taking substructures, the logic FO[Q%] has a 0-1 law
for G(p), for any constant p.

Observe that, by duality, the argument outlined
above also works for classes of graphs that are closed
under extensions rather than substructures. This
should be compared with a result in [8] which shows
that the logic FO"[@%] has a 0-1 law if H is monotone
and closed under extensions. We have weakened the
hypothesis by dropping the requirement of monotonic-
ity and greatly strengthened the theorem by allowing
both vectorization and nesting of quantifiers.

Writing 3-col for the graph quantifier defined by the
class of 3-colourable graphs, and Plan for the graph
quantifier corresponding to the class of planar graphs,
the following two corollaries of Theorem 7.4 are im-
mediate.

Corollary 7.5 FO[3-col"] has a 0-1 law.

Corollary 7.6 FO[Plan*] has a 0-1 law.

Moreover, these results are easily extended to the clo-
sure of these logics under relativizations. Neither 3-
colourability nor planarity has previously been shown
to be expressible in a regular logic that is closed un-
der vectorization and has a 0-1 law. Corollary 7.5 also
answers a question posed by lain Stewart.
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